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Introduction and Motivation



An (in)famous example: Power poses 1/39

A well cited paper by Carney, Cuddy & Yap (2010).



An (in)famous example: Power poses (2) 2/39

Dana Carney’s (first author) retraction of her name:



Peak at your peril 3/39

Why does Carney speak about p-hacking? Let’s review.

Confidence sets: Must satisfy P(θ ∈ CIαn) ≥ 1 − α. For example, θ̂n := 1
n

∑n
i=1Xi ∼

N (θ, σ
2

n ) for n� 0 by CLT, so the classical z-interval CIαn = [θ̂n − zα
2

σ̂n√
n
, θ̂n + zα

2

σ̂n√
n
].

Duality between p-values and confidence sets:
1 a p-value for H0 : θ = θ0 based on (CIαn)α is Pθ0 = sup{α ∈ [0, 1] : θ0 ∈ CIαn}.
2 a confidence set based on (Pθ0)θ0 is CIαn = {θ0 ∈ R : Pθ0 > α}.

Issue: These are valid only for a fixed a priori selected n!



A concrete example 4/39

Setup: Xi i.i.d. Rademacher, θ̂n = 1
n

∑n
i=1Xi, θ = E[θ̂n] = 0.
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Francis J. Anscombe 5/39

‘Sampling to reach a foregone conclusion.’

Fixed-sample-size analysis of sequential observations.
Biometrics, 10 (1954), 89-100.



Rest of the presentation 6/39

Goal: Introduce sequential analysis tools which are valid under arbitrary stopping rules,
and control for multiple hypothesis testing under arbitrary dependencies.

Applications: Statistical analysis in natural and social sciences, randomised trials in
medicine, causal inference, A/B testing, . . .



Rest of the presentation (2) 7/39

I. Introduction and Motivation

II. Time-Uniform Chernoff Bounds

III. Bets and confidence sequences

IV. E-values and false discovery rate control

V. Wrap-Up



Time-Uniform Chernoff Bounds



example: Evaluation of a Classifier 8/39

• Consider data set of labelled i.i.d. observations:

(Zi, Yi)
ntrain
i=1 ⊆ Z × { A , B }.

some feature space• Consider a trained classifier
F : Z → { A , B }.

• We wish to test whether the classifier learned anything :

P(F (Z∗) = Y ∗)
?
> 1

2 .

new observation



example: Evaluation of a Classifier (2) 9/39

• We will collect new i.i.d. samples (Z∗1 , Y
∗
1 ), (Z

∗
2 , Y

∗
2 ), . . ., set

Xi =

{
+1 if F (Z∗i ) = Y ∗i ,

−1 if F (Z∗i ) 6= Y ∗i ,

and test H0 : E[X] = 0 against H1 : E[X] > 0.

• Standard approach:

1 Collect n such samples.
2 Estimate the score on this new data: 1

nSn := 1
n

∑n
i=1Xi.

3 Compute a one-sided α-confidence interval (−∞, Un):
P0(

1
nSn ∈ (−∞, Un)) ≥ 1− α.

4 Reject H0 if 1
nSn /∈ (−∞, Un).



example: Evaluation of a Classifier (3) 10/39

• Collecting samples can be expensive!

7 Cannot prematurely stop the collection process.
7 Cannot collect more samples if you failed to reject H0.

• Mathematical statement of these observations:

P0(
1
τ Sτ ∈ (−∞, Uτ )) 6≥ 1− α for a stopping rule τ .

Can we modify the standard approach to allow any stopping rule?

• Yes! Need uniform guarantee (Lem 1, Ramdas et al., 2020):

P0(∀n : 1
nSn ∈ (−∞, Un)) ≥ 1− α.



Uniform Confidence Sequences 11/39

Pointwise confidence interval:

P0(Sn ∈ CIn) ≥ 1− α

• A single CIn

7 Valid for a single n ∈ N
X Tighter

Sn

n

Uniform confidence sequence:

P0(∀n : Sn ∈ CIn) ≥ 1− α

• A sequence (CIn)n≥1

X Valid for all n ∈ N
7 Looser (no free lunch!)

Sn

n



Constructing CIs and UCSs 12/39

Pointwise confidence interval:

P0(Sn ≥ b) ≤ g(b)

• Cramér–Chernoff method
• Markov’s inequality:

P(X ≥ b) ≤ 1
bE[X]

• Underlying martingale:

(Ln)n≥1

Uniform confidence sequence:

P0(∃n : Sn≥an+b) ≤ g(a, b)

• Cramér–Chernoff method

⇒ Ville’s inequality:

P( sup
n≥1

Ln ≥ b) ≤ 1
bE[L1]

Enables uniform guarantee!



recap: Martingales 13/39

• Definition: (Ln)n≥1 is a martingale if

E[Ln+1 | Fn] = Ln.

all information
up to time n

Ln = capital at time n,
fair betting game

• Intuition: martingales are increasingly finer averages:

Ln = E[L∞ | Fn].

X Constant expectation: E[Ln] = E[L1].
X Ville’s inequality:

P( sup
n≥1

Ln ≥ b) ≤ 1
bE[L1]



recap: MGF, CFG, and Convex Conjugate 14/39

• Moment-generating function (MGF):

ϕX(λ) := E[eλX ], ϕSn(λ) = ϕX(λ)
n.

• Cumulant-generating function (CGF):

ψX(λ) := logϕX(λ), ψSn(λ) = nψX(λ).

• Convex conjugate of CGF:

ψ∗X(b) := sup
λ∈R

(bλ− ψX(λ)).

• ψ∗X determines how 1
nSn fluctuates around E[X] (e.g., Cramér’s Theorem).



Pointwise Concentration of Sn 15/39

• Cramér–Chernoff method:

P0(Sn ≥ b) = P0(e
λSn ≥ eλb) (λ > 0)

≤ e−λb E[eλSn ] (Markov’s inequality)
(i)
= exp

[
−n( bnλ− ψX(λ))

]
, (def. of ψX)

P0(Sn ≥ b) ≤ exp
[
−nψ∗X( bn)

]
. (inf over λ > 0)

• Equivalently, (i) uses that Ln is a martingale:

Ln := eλSn−nψX(λ), E[Ln+1 | Fn] = Ln, E[Ln] = 1.

def. of martingale⇒ Use this to generalise to UCS!



Line Crossing Inequality for Sn 16/39

• Choose λ > 0 such that a ≥ ψ(λ)
λ :

P0(∃n : Sn ≥ an+ b) ≤ P0(∃n : Sn ≥ ψ(λ)
λ n+ b)

= P0(∃n : eλSn−nψ(λ) ≥ eλb)
= P0( supn≥1 e

λSn−nψ(λ) ≥ eλb)
≤ e−λb E[L1] = e−λb, (Ville’s inequality)

P0(∃n : Sn ≥ an+ b) ≤ exp[−D(a)b], (inf over λ)

where D(a) = sup {λ > 0 : a ≥ ψ(λ)
λ } (inverse of λ 7→ ψ(λ)

λ ).

• This is an exponential line crossing inequality.
• Cannot be improved: equality for BM (D(a) = 2a).



Line Crossing Inequality for Sn (2) 17/39

Pointwise confidence interval:

P0(Sn ≥ b) ≤ exp
[
−nψ∗X( bn)

]

Sn
n

b

Uniform confidence sequence:

P0(∃n : Sn ≥ an+ b) ≤ exp[−D(a)b]

Sn
n

b 1
a

• How these compare?
• Towards CI and UCS: set RHS to α and solve for b.



Line Crossing Inequality for Sn (3) 18/39

Pointwise confidence interval:

P0(Sn ≥ nψ∗−1X [ 1n log(
1
α)]) ≤ α

Sn

n

Uniform confidence sequence:

P0(∃n : Sn ≥ ψ(λ)
λ n+ log(1/α)

λ ) ≤ α
asymptotic tightness
(increases with λ)

initial tightness
(decreases with λ)1

nSn

n

ψ(λ)
λ

• Linearisation of pointwise bound gives uniform bound!
7 Uniform bound fails to produce UCS for 1

nSn that goes to zero...



Mixture Boundaries 19/39

• We require a sublinear-boundary crossing inequality for Sn.

typically Sn = Op(
√
n)

• Heart of argument of line crossing inequality:

Sn ≥ ψ(λ)
λ n+ log(1/α)

λ =⇒ Ln(λ) = eλSn−nψ(λ) ≥ 1
α .

• Condition on Sn can be written in a more direct way:

Sn ≥ sup {s ∈ R : eλs−nψ(λ) < 1
α} :=Mα(n |λ).

• Observation: λ > 0 optimally restricts s for one n ∈ N.
• Idea: average over λ > 0 to get compromise for all n ≥ 1.



Mixture Boundaries (2) 20/39

• Mixture boundary:

Mα(n) = sup {s ∈ R : Eλ>0[e
λs−nψ(λ)] < 1

α},

which guarantees P0(∃n : Sn ≥Mα(n)) ≤ α.
• Distribution F over λ determines around which n the boundaryMα is tightest.
(Knob to tune in practice!)
• Exploit conjugacy to obtain convenientMα(n) = O(

√
n log n).

• Optimise F to approach optimalMα(n) = O(
√
n log logn).

• RevealsMα(n) as nonasymptotic analogue of LIL:

lim sup
n→∞

Sn√
2n log log n

= 1 almost surely.



Sub-ψ Processes and the Master Theorem 21/39

• Howard et al. (2018a,b) generalise story and provide much more detail. Fantastic
read. Highly recommended!
• Key definition: (St)t∈T ∪{0} is `0-sub-ψ if

exp(λSt − ψ(λ)Vt)≤Lt(λ) almost surely.

any function like CGF

variance process,
measures time

supermartingale,
L0(λ) ≤ `0

• Theorem 1 by Howard et al. (2018a): weaker assumptions and stronger results!
• Results generalise to continuous time and processes taking values in Banach spaces
(vectors, matrices, ...).
• Cool applications: empirical Bernstein UCS to estimate ATE in Neyman–Rubin

model, matrix LIL, ...



Bets and confidence sequences



recap: Method of mixtures 22/39

A boundary of uniform confidence set can be constructed via

Mα(v) = sup

{
s ∈ R :

∫
exp{λs− ψ(λ)v} dF (λ) < 1

α

}
yielding P(∃n : Sn ≥Mα(Vn)) ≤ P(∃n : Ln ≥ 1

α) ≤ α (Ville).

Mα is unimprovable in the sub-Gaussian case (tight for Brownian motion), but can be
loose or computationally demanding in other cases!



Can we do better in some special case?



Bounds and variances 24/39

If |Xi| ≤ b and σ2 � b2, Bernstein P(Sn ≥ nδ) ≤ e
− nδ2

2(σ2+bδ/3) much tighter than the

(sub-Gaussian) Hoeffding P(Sn ≥ nδ) ≤ e−
nδ2

2b2 !

0.0 0.2 0.4 0.6 0.8 1.0
δ

0.0

0.2

0.4

0.6

0.8

1.0

bo
un

d

[H] 1
[B] 1
[H] 10
[B] 10
[H] 30
[B] 30



Looseness ofMα for bounded r.v.s 25/39

Mα(v) = sup

{
s ∈ R :

∫
exp{λs− ψ(λ)v︸ ︷︷ ︸

(II)

} dF (λ)︸ ︷︷ ︸
(I)

<
1

α

}

(I): Ville valid for any Ln(λ) = eλSn−ψ(λ)Vn . λ determines where Sn ≥ ψ(λ)
λ Vn +

log(1/α)
λ

tightest, butMα compromises by mixing rather than optimising over λ.

Idea: Replace dF (λ) by a predictable sequence (λn)n≥1. For Vn = n

E[Ln+1 |X1:n, λ1:n] = E[e
∑n+1
i=1 λiXi−ψ(λi) |X1:n, λ1:n]

= LnE[eλn+1Xn+1−ψ(λn+1) |X1:n, λ1:n] ≤ Ln

which allows estimating λn closer to an optimal λ?n.



Looseness ofMα for bounded r.v.s (2) 26/39

Mα(v) = sup

{
s ∈ R :

∫
exp{λs− ψ(λ)v︸ ︷︷ ︸

(II)

} dF (λ)︸ ︷︷ ︸
(I)

<
1

α

}

(II): If ψX < ψ, Ln ‘strict’ supermartingale =⇒ Ville loose. Why? Recall in Ville, we
define a stopping time τ := inf{n ≥ 1: Ln ≥ δ}

E[L0]
(?)

≥ E[Lτ ] ≥ E[Lτ1τ<∞] ≥ δP(∃n : Ln ≥ δ)

with (?) an equality if L is a martingale (OST), i.e., ψ = ψX .

Idea: Use (Ln)n≥1 which is always a martingale. (Comes next!)



Capital processes 27/39

Setup: Initial capital L0 = 1. We are tasked with placing a series of predictable bets
λn ∈ [−1, 1] on a trial outcome Xn ∈ {−1,+1}

L1 := 1 + λ1X1 ← X1 = +1

L2 := (1 + λ2X2)(1 + λ1X1) ← X2 = −1
...

Ln := (1 + λnXn)

n−1∏
i=1

(1 + λiXi) ← Xn = −1

where sign(λn) encodes belief about direction, |λn| confidence.

(Ln)n≥1 is called capital process in game-theoretic probability. Each round we can loose
all or double our capital depending on λn.



Gambling with Ville 28/39

If (Xn) ⊂ [−1, 1] a zero-mean martingale (null), then

Ln =
∏n
i=1(1 + λiXi)

is a non-negative martingale for (λn) ⊂ [−1, 1].

Ln � 0 evidence against null as P0(∃n : Ln ≥ 1
α) ≤

α (Ville) =⇒ invert the hypothesis test to get UCS!

Xn ∈ [0, 1], E[Xn+1 | Fn] = µ. Play simultaneously for all m ∈ [0, 1] with |λn(m)| ≤ 1

Kn(m) :=

n∏
i=1

[1 + λi(m)(Xi −m)]

which makes K(µ) a martingale. The UCS is then CIn = {m ∈ [0, 1] : Kn(m) < 1
α}.



A betting scheme 29/39

Approximate hindsight optimal constant bet λ?n(m) for each m ∈ [0, 1]

1
n
d logKn(m)

dλ = 1
n

∑n
i=1

Xi−m
1+λ(Xi−m)︸ ︷︷ ︸

not predictable

≈ 1
n−1

∑n−1
i=1

Xi−m
1+λ(Xi−m)︸ ︷︷ ︸

predictable

set
= 0

Approximating (1 + z)−1 ≈ 1− z for z ≈ 0 (Taylor)

1

n− 1

n−1∑
i=1

(Xi −m)[1− λ(Xi −m)] = µ̂n−1 −m− λ[σ̂2n−1 + (µ̂n−1 −m)2] = 0

=⇒ λ?n(m) ≈ λn(m) =
µ̂n−1 −m

σ̂2n−1 + (µ̂n−1 −m)2

where λn(m) is clipped to [−1, 1] when substituting to Kn(m).



Uniform confidence sequences 30/39
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Fixed sample confidence intervals! 31/39
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E-values and false discovery rate control



Betting scores are e-values 32/39

We saw Kn(m) =
∏n
i=1(1 + λi(Xi −m)) can be used to construct

CIn =

{
m : Kn(m) <

1

α

}
=

{
m :

1

Kn(m)
> α

}

Compare: p-values Pθ0 (H0 : θ = θ0) can be inverted to obtain CIn = {θ0 : Pθ0 > α}.

Kn(m) is an example of a class of random variables called e-values.

• Pointwise: [0,∞] random variable E with E0[E] ≤ 1.
• Uniform: [0,∞] random variables (En)n≥1 with E0[Eτ ] ≤ 1 for any stopping time τ .



Are e-values just p-values rebranded? 33/39

Not really! Both measure evidence against some null hypothesis but:
• p-value P is [0, 1] random variable satisfying P0(P ≤ α) ≤ α
• e-value E is [0,∞] random variable satisfying E0[E] ≤ 1

E-values only require information about expectation, p-values about the CDF!

An e-value can be converted to p-value via Markov

P0(
1
E ≤ α) = P0(E ≥ 1

α) ≤ αE0[E] ≤ α

Conversions in the opposite direction exist as well, but neither are statistically efficient!



When we might prefer e-values over p-values? 34/39

1 e-values occur naturally in (sequential) inference
• test supermartingales

∏n
i=1 e

λXi−ψ(λ)

• capital processes
∏n
i=1(1 + λiXi)

• likelihood ratios
∏n
i=1

pθ(Xi)
p0(Xi)

2 p-values need tail but e-values only expectation control
• p-values typically more sensitive to misspecification

• many popular p-values based on asymptotics (z/t-statistic, Wilks, etc.)

• example: eλX−λ2X2

2 valid e-value for any symmetric r.v. X

3 p-values often depend on independence
• especially asymptotic arguments (CLT, Wilks, etc.)

• e-values more flexible as we will see next



False discovery rate control 35/39

Task: Test multiple hypothesis H1, . . . ,HK .

Issue: FDP = FP
TP+FP can be much higher than α

even if each true null has FP probability ≤ α.

Idea: Control FDR = E[FDP].
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Benjamini-Hochberg: Order p-values from lowest to largest p(1), . . . , p(K)

k? := max

{
k ∈ [K] : p(k) ≤ α

k

K

}
and reject hypotheses associated with the p-values p(1), . . . , p(k?).



Benjamini-Hochberg with e-values 36/39

BH ensures FDR = E[FPR] ≤ α but not if tests are dependent!

Benjamini-Yekutieli: k? = sup{k ∈ [K] : p(k) ≤ α k
Kck
}, ck =

∑k
i=1

1
i . BY works for any

dependence structure but looses power!

e-BH: Order e-values from largest to lowest e[1], . . . , e[K]

k? = max

{
k ∈ [K] : e[k] ≥

1

α

K

k

}
and reject hypothesis associated with the e-values e[1], . . . , e[k?]. e-BH controls FDR ≤ α
even if e1, . . . , eK are arbitrarily dependent!



Proving e-BH controls FDR 37/39

1 Recall K? = max
{
k ∈ [K] : E[k] ≥ 1

α
K
k

}
.

2 With N ⊆ [K] the true nulls, G ⊆ [K] the rejects, and 0
0 = 0

FDP =
|N ∩G|
|G|

=
∑
k∈N

1k∈G
|G|

(?)

≤
∑
k∈N

αEk
K

1k∈G

where (?) is by Ek ≥ E[K?] ≥
1
α
K
K?

= 1
α
K
|G| for all k ∈ G.

3 Since E[Ek] ≤ 1 for k ∈ N

FDR = E[FDP] ≤ α

K

∑
k∈N

E[Ek1k∈G]
Ek≥0
≤ α

|N |
K
≤ α



Wrap-Up



Wrap-Up 38/39

Time-uniform Chernoff bounds: (Howard et al., 2018a; Howard et al., 2018b)
• UCSs key to flexible sequential inference.
• Often a martingale behind pointwise concentration bound.
⇒ Enables generalisation to uniform bound.

Bets and confidence sequences: (Waudby-Smith and Ramdas, 2020)
• Links between betting strategies, and test power maximisation.
• Tighter bounds (even fixed-sample) for bounded random variables.

E-values and false discovery rate control: (Wang and Ramdas, 2020)
• E-values trade-off power for validity relative to p-values.
• Many uses including FDR control under arbitrary dependencies.
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